

IT SKILL EDUCATIONAL INSTITUTE

Register Under section 8, Ministry of Corporate Affairs, Govt. of India Regd. By: MSME (Micro, Small and Medium Enterprises), ISO 9001:2015 Certified (A UNIT OF RUC IT SKILLS INDIA)

Website: www.itsei.in | Email: itseiindia@gmail.com

#	Subject Name	Question	Options				Commont
			Α	В	С	D	Correct
1	FUNDAMENTAL OF COMPUTER	When $a eq 0$, there are two solutions to $ax^2 + bx + c + d = 0$ and they are $x = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\int_0^\pi \sin x dx = 2$	$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$	$S_n=rac{n(n+1)}{2}$	Null	
2	FUNDAMENTAL OF COMPUTER	When $a eq 0$, there are two solutions to $ax^2 + bx + c + d = 0$ and they are $x = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\int_0^\pi \sin x dx = 2$	$E=mc^2$	$\int_0^\pi \sin x dx = 2$	$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$	

#	Subject Name	Question	Options				Correct
#			Α	В	С	D	Correct
3	FUNDAMENTAL OF COMPUTER	When $a \neq 0$, there are two solutions to $ax^2 + bx + c + d = 0$ and they are $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$ $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$	$\int_0^\pi \sin x dx = 2$	$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$	$\int_0^\pi \sin x dx = 2$	$S_n=rac{n(n+1)}{2}$	
4	FUNDAMENTAL OF COMPUTER	When $a eq 0$, there are two solutions to $ax^2 + bx + c + d = 0$ and they are $x = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\int_0^\pi \sin x dx = 2$	$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$	$S_n=rac{n(n+1)}{2}$	NULL	
5	FUNDAMENTAL OF COMPUTER	When $a eq 0$, there are two solutions to $ax^2 + bx + c + d = 0$ and they are $x = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\int_0^\pi \sin x dx = 2$	$E=mc^2$	$\int_0^\pi \sin x dx = 2$	$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$	
6	FUNDAMENTAL OF COMPUTER	When $a eq 0$, there are two solutions to $ax^2 + bx + c + d = 0$ and they are $x = rac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	$\int_0^\pi \sin x dx = 2$	$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$	$S_n=rac{n(n+1)}{2}$	0	